scipy.stats.kappa3#

scipy.stats.kappa3 = <scipy.stats._continuous_distns.kappa3_gen object>[source]#

Kappa 3 参数分布。

作为 rv_continuous 类的实例,kappa3 从它继承了一组通用方法(完整列表见下文),并用此特殊分布的具体细节对其进行了补充。

说明

kappa3 的概率密度函数是

\[f(x, a) = a (a + x^a)^{-(a + 1)/a}\]

对于 \(x > 0\)\(a > 0\)

kappa3a 作为 \(a\) 的形状参数。

参考

P.W. Mielke 和 E.S. Johnson,“三参数Kappa分布最大似然和似然比检验”,气象研究方法,第 701-707 页,(1973 年 9 月),DOI:10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.CO;2

B. 恭蓬,“三参数卡帕分布的最大熵和最大似然估计”,开放统计学杂志,第2卷,415-419(2012),DOI:10.4236/ojs.2012.24050

上述概率密度以“标准化”形式定义。要平移和/或缩放分布,请使用locscale参数。具体而言,kappa3.pdf(x, a, loc, scale)kappa3.pdf(y, a) / scale完全等效,其中y = (x - loc) / scale。请注意,改变分布的位置并不会使其成为“非中心”分布;某些分布的非中心概括分布可在单独的类中获得。

示例

>>> import numpy as np
>>> from scipy.stats import kappa3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

计算前四个矩

>>> a = 1
>>> mean, var, skew, kurt = kappa3.stats(a, moments='mvsk')

显示概率密度函数 (pdf)

>>> x = np.linspace(kappa3.ppf(0.01, a),
...                 kappa3.ppf(0.99, a), 100)
>>> ax.plot(x, kappa3.pdf(x, a),
...        'r-', lw=5, alpha=0.6, label='kappa3 pdf')

或者,可以调用分布对象(作为函数),以修正形状、位置和比例参数。这将返回一个“冻结”的随机变量对象,保持给定参数固定。

冻结分布并显示冻结的pdf

>>> rv = kappa3(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查cdfppf的准确性

>>> vals = kappa3.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], kappa3.cdf(vals, a))
True

生成随机数

>>> r = kappa3.rvs(a, size=1000)

并比较直方图

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-kappa3-1.png

方法

rvs(a, loc=0, scale=1, size=1, random_state=None)

随机变量。

pdf(x, a, loc=0, scale=1)

概率密度函数。

logpdf(x, a, loc=0, scale=1)

概率密度函数的对数。

cdf(x, a, loc=0, scale=1)

累积分布函数。

logcdf(x, a, loc=0, scale=1)

累积分布函数的对数。

sf(x, a, loc=0, scale=1)

生存函数(也定义为1 - cdf,但 sf 有时会更准确)。

logsf(x, a, loc=0, scale=1)

生存函数的对数。

ppf(q, a, loc=0, scale=1)

百分位函数(cdf的反函数 — 百分位数)。

isf(q, a, loc=0, scale=1)

逆生存函数(sf的反函数)。

moment(order, a, loc=0, scale=1)

指定阶数的非中心矩。

stats(a, loc=0, scale=1, moments=’mv’)

均值(‘m’)、方差(‘v’)、偏度(‘s’)和/或峰度(‘k’)。

entropy(a, loc=0, scale=1)

随机变量的(微分)熵。

fit(data)

通用数据的参数估计。请参阅 scipy.stats.rv_continuous.fit 以详细了解关键字参数的文档说明。

expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

相对于分布的一个以一个自变量作为参数的函数的期望值。

median(a, loc=0, scale=1)

分布的中位数。

mean(a, loc=0, scale=1)

分布的平均值。

var(a, loc=0, scale=1)

分布的方差。

std(a, loc=0, scale=1)

分布的标准差。

interval(confidence, a, loc=0, scale=1)

中位数周围区域均等的置信区间。