scipy.stats.johnsonsu#

scipy.stats.johnsonsu = <scipy.stats._continuous_distns.johnsonsu_gen object>[source]#

约翰逊 SU 连续随机变量。

作为 rv_continuous 类的一个实例,johnsonsu 对象从它那里继承了一组通用方法(见下文中的完整列表),并用此特定分布的详细信息将这些方法补充完整。

另请参阅

johnsonsb

备注

johnsonsu 的概率密度函数为

\[f(x, a, b) = \frac{b}{\sqrt{x^2 + 1}} \phi(a + b \log(x + \sqrt{x^2 + 1}))\]

其中 \(x\)\(a\)\(b\) 是实标量;\(b > 0\)\(\phi\) 是正态分布的 PDF。

johnsonsu\(a\)\(b\) 作为形状参数。

前四个中心矩采用 [1] 中的公式计算。

上述概率密度被定义为“标准化”形式。要平移和/或缩放分布,请使用 locscale 参数。具体而言,johnsonsu.pdf(x, a, b, loc, scale) 等同于 johnsonsu.pdf(y, a, b) / scale,其中 y = (x - loc) / scale。请注意,平移分布的位置并不会使其成为“非中心”分布;某些分布的非中心概括可用于单独的类中。

参考文献

[1]

Taylor Enterprises。“Johnson Family 中的分布”。 https://variation.com/wp-content/distribution_analyzer_help/hs126.htm

示例

>>> import numpy as np
>>> from scipy.stats import johnsonsu
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

计算前四个矩

>>> a, b = 2.55, 2.25
>>> mean, var, skew, kurt = johnsonsu.stats(a, b, moments='mvsk')

显示概率密度函数 (pdf)

>>> x = np.linspace(johnsonsu.ppf(0.01, a, b),
...                 johnsonsu.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsu.pdf(x, a, b),
...        'r-', lw=5, alpha=0.6, label='johnsonsu pdf')

或者,可以调用分布对象(作为函数),以修复形状、位置和规模参数。这将返回一个“冻结”的 RV 对象,其中给定参数被修复。

冻结分布并显示冻结的 pdf

>>> rv = johnsonsu(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查 cdfppf 的准确性

>>> vals = johnsonsu.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsu.cdf(vals, a, b))
True

生成随机数

>>> r = johnsonsu.rvs(a, b, size=1000)

比较直方图

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-johnsonsu-1.png

方法

rvs(a, b, loc=0, scale=1, size=1, random_state=None)

随机变量。

pdf(x, a, b, loc=0, scale=1)

概率密度函数。

logpdf(x, a, b, loc=0, scale=1)

概率密度函数的对数。

cdf(x, a, b, loc=0, scale=1)

累积分布函数。

logcdf(x, a, b, loc=0, scale=1)

累积分布函数的对数。

sf(x, a, b, loc=0, scale=1)

生存函数(也定义为 1 - cdf,但 sf 有时更准确)。

logsf(x, a, b, loc=0, scale=1)

生存函数的对数。

ppf(q, a, b, loc=0, scale=1)

百分点函数(cdf 的逆——百分位)。

isf(q, a, b, loc=0, scale=1)

逆生存函数(sf 的逆)。

moment(order, a, b, loc=0, scale=1)

指定阶次的非中心矩。

stats(a, b, loc=0, scale=1, moments=’mv’)

均值(“m”)、方差(“v”)、偏度(“s”)和/或峰度(“k”)。

entropy(a, b, loc=0, scale=1)

随机变量的(微分)熵。

fit(data)

通用数据参数估计。有关关键字参数的详细信息,请参阅 scipy.stats.rv_continuous.fit

expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

函数(单参数)的期望值(相对于分布)。

median(a, b, loc=0, scale=1)

分布的中位数。

mean(a, b, loc=0, scale=1)

分布的均值。

var(a, b, loc=0, scale=1)

分布的方差。

std(a, b, loc=0, scale=1)

分布的标准差。

interval(confidence, a, b, loc=0, scale=1)

中位数周围具有相等面积的置信区间。