scipy.linalg.
rsf2csf#
- scipy.linalg.rsf2csf(T, Z, check_finite=True)[source]#
将实数 Schur 形式转换为复数 Schur 形式。
将准对角实数 Schur 形式转换为上三角复数 Schur 形式。
- 参数:
- T(M, M) array_like
原始数组的实数 Schur 形式
- Z(M, M) array_like
Schur 变换矩阵
- check_finitebool, 可选
是否检查输入数组是否只包含有限数字。禁用此选项可以提高性能,但如果输入确实包含无穷大或 NaN,可能会导致问题(崩溃、不终止)。
- 返回值:
- T(M, M) ndarray
原始数组的复数 Schur 形式
- Z(M, M) ndarray
与复数形式对应的 Schur 变换矩阵
另请参见
schur
数组的 Schur 分解
示例
>>> import numpy as np >>> from scipy.linalg import schur, rsf2csf >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]]) >>> T, Z = schur(A) >>> T array([[ 2.65896708, 1.42440458, -1.92933439], [ 0. , -0.32948354, -0.49063704], [ 0. , 1.31178921, -0.32948354]]) >>> Z array([[0.72711591, -0.60156188, 0.33079564], [0.52839428, 0.79801892, 0.28976765], [0.43829436, 0.03590414, -0.89811411]]) >>> T2 , Z2 = rsf2csf(T, Z) >>> T2 array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.00660462j], [0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j], [0.+0.j , 0.+0.j, -0.32948354-0.802254558j]]) >>> Z2 array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j], [0.52839428+0.j, 0.24720268+0.41635578j, -0.68079517-0.15118243j], [0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]])