scipy.fft.

next_fast_len#

scipy.fft.next_fast_len(target, real=False)#

查找输入数据到 fft 的下一个快速大小,用于零填充等操作。

SciPy 的 FFT 算法通过递归分治策略获得速度。这依赖于对输入长度的小素数因子的高效函数。因此,当使用 FFT 实现处理的素数因子的合数时,变换速度最快。如果所有基数 <= n 都有高效函数,则结果将是一个数字 x >= target,且其素数因子仅小于 n。(也称为 n-平滑数)

参数:
target整型

开始搜索的长度。必须是正整数。

real布尔型,可选

如果 FFT 涉及实数输入或输出(例如,rffthfft,而非 fft),则为 True。默认为 False。

返回:
out整型

大于或等于 target 的最小快速长度。

注意

此函数的结果未来可能会随性能考虑因素的变化而改变,例如,如果添加了新的素数因子。

调用 fftifft 并使用实数输入数据会在内部执行 'R2C' 变换。

示例

在特定机器上,素数长度的 FFT 需要 11.4 毫秒

>>> from scipy import fft
>>> import numpy as np
>>> rng = np.random.default_rng()
>>> min_len = 93059  # prime length is worst case for speed
>>> a = rng.standard_normal(min_len)
>>> b = fft.fft(a)

零填充到下一个常规长度将计算时间减少到 1.6 毫秒,提速 7.3 倍

>>> fft.next_fast_len(min_len, real=True)
93312
>>> b = fft.fft(a, 93312)

向上舍入到下一个 2 的幂并非最优,计算需要 3.0 毫秒;比 next_fast_len 给出的尺寸长 1.9 倍

>>> b = fft.fft(a, 131072)