瑞利分布#

这是卡方分布的一种特殊情况,其中 \(L=0.0\)\(\nu=2\)(通常不使用位置参数),分布的众数是 \(S.\)

\begin{eqnarray*} f\left(r\right) & = & re^{-r^{2}/2}\\ F\left(r\right) & = & 1-e^{-r^{2}/2}\\ G\left(q\right) & = & \sqrt{-2\log\left(1-q\right)}\end{eqnarray*}
\begin{eqnarray*} \mu & = & \sqrt{\frac{\pi}{2}}\\ \mu_{2} & = & \frac{4-\pi}{2}\\ \gamma_{1} & = & \frac{2\left(\pi-3\right)\sqrt{\pi}}{\left(4-\pi\right)^{3/2}}\\ \gamma_{2} & = & \frac{24\pi-6\pi^{2}-16}{\left(4-\pi\right)^{2}}\\ m_{d} & = & 1\\ m_{n} & = & \sqrt{2\log\left(2\right)}\end{eqnarray*}
\[h\left[X\right]=\frac{\gamma}{2}+\log\left(\frac{e}{\sqrt{2}}\right).\]
\[\mu_{n}^{\prime}=\sqrt{2^{n}}\Gamma\left(\frac{n}{2}+1\right)\]

实现: scipy.stats.rayleigh