莱斯分布#
有一个形状参数 \(b\geq0\) ( “距原点的距离”),并且支持域为 \(x\geq0\)。
\begin{eqnarray*} f\left(x;b\right) & = & x\exp\left(-\frac{x^{2}+b^{2}}{2}\right)I_{0}\left(xb\right)\\ F\left(x;b\right) & = & \int_{0}^{x}\alpha\exp\left(-\frac{\alpha^{2}+b^{2}}{2}\right)I_{0}\left(\alpha b\right)d\alpha\end{eqnarray*}
其中 \(I_{0}(y)\) 是第一类零阶修正贝塞尔函数。
\[\mu_{n}^{\prime}=\sqrt{2^{n}}\Gamma\left(1+\frac{n}{2}\right)\,_{1}F_{1}\left(-\frac{n}{2};1;-\frac{b^{2}}{2}\right)\]