scipy.ndimage.
binary_propagation#
- scipy.ndimage.binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0, *, axes=None)[源代码]#
使用给定的结构元素进行多维二值传播。
- 参数:
- inputarray_like
要传播到mask内的二值图像。
- structurearray_like, 可选
在连续膨胀中使用的结构元素。输出可能取决于结构元素,特别是如果mask有几个连通分量。如果没有提供结构元素,则会生成一个具有等于 1 的平方连通性的元素。
- maskarray_like, 可选
定义允许input传播的区域的二值掩码。
- outputndarray, 可选
与输入形状相同的数组,输出放置在该数组中。默认情况下,会创建一个新数组。
- border_valueint (转换为 0 或 1), 可选
输出数组中边界的值。
- originint 或 int 元组, 可选
滤波器的位置,默认为 0。
- axesint 元组或 None
应用滤波器的轴。如果为 None,则沿所有轴过滤input。如果提供了origin元组,则其长度必须与轴的数量匹配。
- 返回:
- binary_propagationndarray
input在mask内的二值传播。
说明
此函数的功能等效于调用迭代次数小于 1 的 binary_dilation:迭代膨胀直到结果不再更改。
在原始图像内部连续进行腐蚀和传播可以用来代替开运算,以删除小对象,同时保持较大对象的轮廓不变。
参考文献
[1][2]I.T. Young, J.J. Gerbrands, and L.J. van Vliet, “Fundamentals of image processing”, 1998 ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf
示例
>>> from scipy import ndimage >>> import numpy as np >>> input = np.zeros((8, 8), dtype=int) >>> input[2, 2] = 1 >>> mask = np.zeros((8, 8), dtype=int) >>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1 >>> input array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]) >>> mask array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) >>> ndimage.binary_propagation(input, mask=mask).astype(int) array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]) >>> ndimage.binary_propagation(input, mask=mask,\ ... structure=np.ones((3,3))).astype(int) array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
>>> # Comparison between opening and erosion+propagation >>> a = np.zeros((6,6), dtype=int) >>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1 >>> a array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1]]) >>> ndimage.binary_opening(a).astype(int) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0]]) >>> b = ndimage.binary_erosion(a) >>> b.astype(int) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]) >>> ndimage.binary_propagation(b, mask=a).astype(int) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0]])