双帕累托对数正态分布#

对于实数 \(x\)\(\mu\)\(\sigma > 0\)\(\alpha > 0\)\(\beta > 0\),双帕累托对数正态分布的 PDF 为

\begin{eqnarray*} f(x, \mu, \sigma, \alpha, \beta) = \frac{\alpha \beta}{(\alpha + \beta) x} \phi\left( \frac{\log x - \mu}{\sigma} \right) \left( R(y_1) + R(y_2) \right) \end{eqnarray*}

其中 \(R(t) = \frac{1 - \Phi(t)}{\phi(t)}\) 是米尔斯比率,\(y_1 = \alpha \sigma - \frac{\log x - \mu}{\sigma}\),和 \(y_2 = \beta \sigma + \frac{\log x - \mu}{\sigma}\)。CDF 是

\begin{eqnarray*} F(x, \mu, \sigma, \alpha, \beta) = \Phi \left(\frac{\log x - \mu}{\sigma} \right) - \phi \left(\frac{\log x - \mu}{\sigma} \right) \left(\frac{\beta R(x_1) - \alpha R(x_2)}{\alpha + \beta} \right) \end{eqnarray*}

原始矩 \(k > \alpha\) 由下式给出

\begin{eqnarray*} \mu_k' = \frac{\alpha \beta}{(\alpha - k)(\beta + k)} \exp \left(k \mu + \frac{k^2 \sigma^2}{2} \right) \end{eqnarray*}

实现: scipy.stats.dpareto_lognorm