插值过渡指南#

此页面包含三组演示

1. 如何过渡到不使用 interp2d#

interp2d 在 2D 规则网格上的插值和 2D 散乱数据的插值之间静默切换。 切换基于(展开的)xyz 数组的长度。 简而言之,对于规则网格,请使用 scipy.interpolate.RectBivariateSpline;对于散乱插值,请使用 bisprep/bisplev 组合。 下面我们给出逐点过渡的示例,它应该完全保留 interp2d 的结果。

1.1 规则网格上的 interp2d#

我们从(稍作修改的)文档字符串示例开始。

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import interp2d, RectBivariateSpline

>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 7.51, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2 + 2.*yy**2)
>>> f = interp2d(x, y, z, kind='cubic')

这是“规则网格”代码路径,因为

>>> z.size == len(x) * len(y)
True

另请注意,x.size != y.size

>>> x.size, y.size
(41, 51)

现在,让我们构建一个方便的函数来构造插值器并绘制它。

>>> def plot(f, xnew, ynew):
...    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
...    znew = f(xnew, ynew)
...    ax1.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
...    im = ax2.imshow(znew)
...    plt.colorbar(im, ax=ax2)
...    plt.show()
...    return znew
...
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 7.51, 1e-2)
>>> znew_i = plot(f, xnew, ynew)

Two plots side by side. On the left, the plot shows points with coordinates(x, z[0, :]) as red circles, and the interpolation function generated as a bluecurve. On the right, the plot shows a 2D projection of the generatedinterpolation function.

替代方案:使用 RectBivariateSpline,结果相同#

注意转置:首先,在构造函数中,其次,你需要转置评估的结果。 这是为了撤消 interp2d 所做的转置。

>>> r = RectBivariateSpline(x, y, z.T)
>>> rt = lambda xnew, ynew: r(xnew, ynew).T
>>> znew_r = plot(rt, xnew, ynew)

Two plots side by side. On the left, the plot shows points with coordinates(x, z[0, :]) as red circles, and the interpolation function generated as a bluecurve. On the right, the plot shows a 2D projection of the generatedinterpolation function.

>>> from numpy.testing import assert_allclose
>>> assert_allclose(znew_i, znew_r, atol=1e-14)

插值阶数:线性、三次等#

interp2d 默认为 kind="linear",它在 x-y- 两个方向上都是线性的。 另一方面,RectBivariateSpline 默认为三次插值,kx=3, ky=3

这是完全等价的

interp2d

RectBivariateSpline

无 kwargs

kx = 1, ky = 1

kind='linear'

kx = 1, ky = 1

kind='cubic'

kx = 3, ky = 3

1.2. 具有点完整坐标的 interp2d(散乱插值)#

在这里,我们展平上一个练习中的网格,以说明该功能。

>>> xxr = xx.ravel()
>>> yyr = yy.ravel()
>>> zzr = z.ravel()
>>> f = interp2d(xxr, yyr, zzr, kind='cubic')

请注意,这是“非规则网格”代码路径,用于散乱数据,len(x) == len(y) == len(z)

>>> len(xxr) == len(yyr) == len(zzr)
True
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 7.51, 1e-2)
>>> znew_i = plot(f, xnew, ynew)

Two plots side by side. On the left, the plot shows points with coordinates(x, z[0, :]) as red circles, and the interpolation function generated as a bluecurve. On the right, the plot shows a 2D projection of the generatedinterpolation function.

替代方案:直接使用 scipy.interpolate.bisplrep / scipy.interpolate.bisplev#

>>> from scipy.interpolate import bisplrep, bisplev
>>> tck = bisplrep(xxr, yyr, zzr, kx=3, ky=3, s=0)
# convenience: make up a callable from bisplev
>>> ff = lambda xnew, ynew: bisplev(xnew, ynew, tck).T   # Note the transpose, to mimic what interp2d does
>>> znew_b = plot(ff, xnew, ynew)

Two plots side by side. On the left, the plot shows points with coordinates(x, z[0, :]) as red circles, and the interpolation function generated as a bluecurve. On the right, the plot shows a 2D projection of the generatedinterpolation function.

>>> assert_allclose(znew_i, znew_b, atol=1e-15)

插值阶数:线性、三次等#

interp2d 默认为 kind="linear",它在 x-y- 两个方向上都是线性的。 另一方面,bisplrep 默认为三次插值,kx=3, ky=3

这是完全等价的

interp2d

bisplrep

无 kwargs

kx = 1, ky = 1

kind='linear'

kx = 1, ky = 1

kind='cubic'

kx = 3, ky = 3

2. interp2d 的替代方案:规则网格#

对于新代码,推荐的替代方案是 RegularGridInterpolator。 它是一个独立的实现,不基于 FITPACK。 支持最近邻、线性插值和奇数阶张量积样条。

保证样条节点与数据点重合。

请注意,这里

  1. 元组参数为 (x, y)

  2. z 数组需要转置

  3. 关键字名称是 *method*,而不是 *kind*

  4. bounds_error 参数默认值为 True

>>> from scipy.interpolate import RegularGridInterpolator as RGI
>>> r = RGI((x, y), z.T, method='linear', bounds_error=False)

评估:创建 2D 网格。 使用 indexing='ij' 和 sparse=True 来节省一些内存

>>> xxnew, yynew = np.meshgrid(xnew, ynew, indexing='ij', sparse=True)

评估,注意元组参数

>>> znew_reggrid = r((xxnew, yynew))
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
# Again, note the transpose to undo the `interp2d` convention
>>> znew_reggrid_t = znew_reggrid.T
>>> ax1.plot(x, z[0, :], 'ro-', xnew, znew_reggrid_t[0, :], 'b-')
>>> im = ax2.imshow(znew_reggrid_t)
>>> plt.colorbar(im, ax=ax2)

Two plots side by side. On the left, the plot shows points with coordinates(x, z[0, :]) as red circles, and the interpolation function generated as a bluecurve. On the right, the plot shows a 2D projection of the generatedinterpolation function.

3. 散乱 2D 线性插值:首选 LinearNDInterpolator 而不是 SmoothBivariateSplinebisplrep#

对于 2D 散乱线性插值,SmoothBivariateSplinebiplrep 都可能发出警告,或者无法插值数据,或者生成节点远离数据点的样条。 相反,首选 LinearNDInterpolator,它基于通过 QHull 三角剖分数据。

# TestSmoothBivariateSpline::test_integral
>>> from scipy.interpolate import SmoothBivariateSpline, LinearNDInterpolator
>>> x = np.array([1,1,1,2,2,2,4,4,4])
>>> y = np.array([1,2,3,1,2,3,1,2,3])
>>> z = np.array([0,7,8,3,4,7,1,3,4])

现在,使用基于 Qhull 的数据三角剖分的线性插值

>>> xy = np.c_[x, y]   # or just list(zip(x, y))
>>> lut2 = LinearNDInterpolator(xy, z)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y)

结果易于理解和解释

>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> ax.plot_wireframe(X, Y, lut2(X, Y))
>>> ax.scatter(x, y, z,  'o', color='k', s=48)

3D plot of a piecewise-linear surface as a blue grid, with the(x, y, z)-coordinate points represented as black circles.

请注意,bisplrep 执行的操作不同! 它可能会将样条节点放置在数据之外。

为了说明,请考虑上一个示例中的相同数据

>>> tck = bisplrep(x, y, z, kx=1, ky=1, s=0)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> xx = np.linspace(min(x), max(x))
>>> yy = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(xx, yy)
>>> Z = bisplev(xx, yy, tck)
>>> Z = Z.reshape(*X.shape).T
>>> ax.plot_wireframe(X, Y, Z, rstride=2, cstride=2)
>>> ax.scatter(x, y, z,  'o', color='k', s=48)

3D plot of a piecewise-linear surface as a blue grid, with the(x, y, z)-coordinate points represented as black circles.

此外,SmoothBivariateSpline 无法插值数据。 再次,使用上一个示例中的相同数据。

>>> lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> xx = np.linspace(min(x), max(x))
>>> yy = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(xx, yy)
>>> ax.plot_wireframe(X, Y, lut(xx, yy).T, rstride=4, cstride=4)
>>> ax.scatter(x, y, z,  'o', color='k', s=48)

3D plot of a piecewise-linear surface as a blue grid, with the(x, y, z)-coordinate points represented as black circles.

请注意,与 LinearNDInterpolator 不同,SmoothBivariateSplinebisplrep 的结果都有伪影。 此处说明的问题是针对线性插值报告的,但是 FITPACK 节点选择机制不能保证避免更高阶(例如,三次)样条曲面的这些问题。