重采样和蒙特卡罗方法#

简介#

重采样和蒙特卡罗方法是统计学技术,用大量的计算来代替数学分析。

例如,假设你和你的兄弟凯尔在一条漫长而孤独的路上搭便车。突然,一个闪闪发光的恶魔出现在...路中间...他说

如果你用正面概率为 \(p=0.5\) 的硬币抛掷 \(n=100\) 次,正面次数小于等于 \(x=45\) 的概率是多少?答对了,否则我会吃掉你们的灵魂。

>>> import math
>>> import numpy as np
>>> p = 0.5  # probability of flipping heads each flip
>>> n = 100  # number of coin flips per trial
>>> x = 45  # we want to know the probability that the number of heads per trial will be less than or equal to this

你的兄弟凯尔是分析型的。他回答说

随着抛掷次数的增加,正面次数的分布将趋向于正态分布,其均值为 \(\mu = p n\),标准差为 \(\sigma = \sqrt{n p (1 - p)}\),其中 \(p = 0.5\) 是正面的概率,\(n=100\) 是抛掷次数。 \(x=45\) 次正面的概率可以近似为该正态分布的累积分布函数 \(F(x)\)。具体来说

\[F(x; \mu, \sigma) = \frac{1}{2} \left[ 1 + \mbox{erf} \left( \frac{x-\mu}{\sigma \sqrt{2}} \right) \right]\]
>>> # Kyle's Analytical Approach
>>> mean = p*n
>>> std = math.sqrt(n*p*(1-p))
>>> # CDF of the normal distribution. (Unfortunately, Kyle forgets a continuity correction that would produce a more accurate answer.)
>>> prob = 0.5 * (1 + math.erf((x - mean) / (std * math.sqrt(2))))
>>> print(f"The normal approximation estimates the probability as {prob:.3f}")
The normal approximation estimates the probability as 0.159

你比较务实,所以你决定采用计算方法(更准确地说,是蒙特卡罗方法):只需模拟许多硬币抛掷序列,统计每次抛掷的正面次数,并将概率估计为正面次数不超过 45 的序列比例。

>>> # Your Monte Carlo Approach
>>> N = 100000  # We'll do 100000 trials, each with 100 flips
>>> rng = np.random.default_rng()  # use the "new" Generator interface
>>> simulation = rng.random(size=(n, N)) < p  # False for tails, True for heads
>>> counts = np.sum(simulation, axis=0)  # count the number of heads each trial
>>> prob = np.sum(counts <= x) / N  # estimate the probability as the observed proportion of cases in which the count did not exceed 45
>>> print(f"The Monte Carlo approach estimates the probability as {prob:.3f}")
The Monte Carlo approach estimates the probability as 0.187

恶魔回答说

你们俩都错了。概率由二项分布给出。具体来说。

\[\sum_{i=0}^{x} {n \choose i} p^i (1-p)^{n-i}\]
>>> # The Demon's Exact Probability
>>> from scipy.stats import binom
>>> prob = binom.cdf(x, n, p)
>>> print(f"The correct answer is approximately {prob}")
The correct answer is approximately 0.18410080866334788

当你的灵魂被吞噬时,你感到欣慰的是,你简单的蒙特卡罗方法比正态近似更准确。这并不罕见:当不知道确切答案时,通常计算近似比分析近似更准确。此外,恶魔很容易编造一些无法进行分析近似(更不用说确切答案)的问题。在这种情况下,计算方法是唯一的选择。

重采样和蒙特卡罗方法教程#

尽管最好在可用时使用精确方法,但学习使用计算统计技术可以提高依赖于分析近似的 scipy.stats 功能的准确性,极大地扩展你的统计分析能力,甚至提高你对统计学的理解。以下教程将帮助你开始使用 scipy.stats 中的重采样和蒙特卡罗方法。

  1. 蒙特卡罗假设检验

  2. 置换检验

    1. 独立样本置换检验

    2. 配对样本置换检验

    3. 相关样本置换检验

  3. 引导法