scipy.signal.windows.

general_cosine#

scipy.signal.windows.general_cosine(M, a, sym=True)[source]#

通用余弦项加权和窗

参数:
Mint

输出窗口中的点数

aarray_like

加权系数序列。这使用以原点为中心的约定,因此这些通常都是正数,而不是交替符号。

symbool, 可选

如果为 True(默认值),则生成对称窗口,用于滤波器设计。如果为 False,则生成周期性窗口,用于频谱分析。

返回值:
wndarray

窗口值的数组。

参考文献

[1]

A. Nuttall,“具有非常好的旁瓣行为的一些窗口”,IEEE 声学、语音和信号处理学报,第 29 卷,第 1 期,第 84-91 页,1981 年 2 月。 DOI:10.1109/TASSP.1981.1163506.

[2]

Heinzel G. 等人,“离散傅里叶变换 (DFT) 的频谱和频谱密度估计,包括完整的窗函数列表和一些新的平顶窗”,2002 年 2 月 15 日 https://holometer.fnal.gov/GH_FFT.pdf

示例

Heinzel 描述了一个名为“HFT90D”的平顶窗,其公式为:[2]

\[w_j = 1 - 1.942604 \cos(z) + 1.340318 \cos(2z) - 0.440811 \cos(3z) + 0.043097 \cos(4z)\]

其中

\[z = \frac{2 \pi j}{N}, j = 0...N - 1\]

由于这使用从原点开始的约定,为了重现窗口,我们需要将每隔一个系数转换为正数

>>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]

该论文指出最高旁瓣在 -90.2 dB。通过绘制窗口及其频率响应来重现图 42,并用红色确认旁瓣电平

>>> import numpy as np
>>> from scipy.signal.windows import general_cosine
>>> from scipy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt
>>> window = general_cosine(1000, HFT90D, sym=False)
>>> plt.plot(window)
>>> plt.title("HFT90D window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.figure()
>>> A = fft(window, 10000) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = np.abs(fftshift(A / abs(A).max()))
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
>>> plt.plot(freq, response)
>>> plt.axis([-50/1000, 50/1000, -140, 0])
>>> plt.title("Frequency response of the HFT90D window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axhline(-90.2, color='red')
>>> plt.show()
../../_images/scipy-signal-windows-general_cosine-1_00.png
../../_images/scipy-signal-windows-general_cosine-1_01.png